What the LHC can and cannot measure in the Higgs sector and beyond

Alexander Paramonov 10/05/2012 Higgs retreat at Argonne

Disclaimer

 The talk is focused on the future prospects for the ATLAS experiment at the LHC

 CMS, LHCb, and ALICE are not mentioned in the talk.

References

- "Physics at a High-Luminosity LHC with ATLAS";
 August 10, 2012; ATL-PHYS-PUB-2012-001
- Expect an updated version later this year.

All the shown results are current (August-September 2012)

LHC schedule

- Late 2009 → Started with √s=900 GeV (after the accident in 2009)
- 2010-2011 \rightarrow Vs=7 TeV, Int. luminosity \sim 5 fb⁻¹
- 2012 → Vs=8 TeV, Integrated luminosity ~ 22 fb⁻¹ (beyond expectations)
 - − Higgs discovery in the summer of 2012 included H→WW, H→WW→4ℓ, H→γγ, H→ττ, and H→bbbar (only the first three used data from 2012)
 - Instantaneous luminosities up to 8·10³³ cm⁻²s⁻¹
- 2013-2014 → Shutdown (LS1 a.k.a. Long Shutdown 1)
- 2015-2017 \rightarrow \sqrt{s} = 13-14 TeV, Integrated luminosity \sim 100 fb⁻¹
 - Instantaneous luminosity ~ 10³⁴ cm⁻²s⁻¹
- 2018 → Shutdown (LS2)
- 2019-2021 \rightarrow \rightarrow vs=13-14 TeV, Integrated luminosity 200-300 fb⁻¹
 - Instantaneous luminosity doubled (crab cavities, lower beam emittances, etc)
- 2022-2023 → LS3 (preparation for the HL-LHC)
- 2024-... \rightarrow \sqrt{s} =13-14 TeV, Integrated luminosity ~3000 fb⁻¹
 - Instantaneous luminosity $\sim 5.10^{34}$ cm⁻²s⁻¹ (140 events in every bunch crossing)

- pp \rightarrow H \rightarrow ZZ \rightarrow 4 leptons (used for spin/CP and couplings)
 - Super clean, fully reconstructed FS, pileup is not a problem
 - scales well with higher instantaneous luminosities (pileup)
- pp \rightarrow H \rightarrow $\gamma\gamma$, "0-jet"
 - Large irreducible backgrounds but the $m(\gamma\gamma)$ is sharp
 - scales well with higher instantaneous luminosities
- pp \rightarrow H+2jets \rightarrow $\gamma\gamma$ +2jets, "2-jet" VBF
 - Resolution of $m(\gamma\gamma)$ does not depend on pileup much. However, large rate of forward jets from pileup, indistinguishable from the hard-scatter jets
 - A bit more difficult at high instantaneous luminosities
- pp → H → WW* → 2leptons+2neutrinos (0-jet)
 - Large irreducible backgrounds from pp→WW, ttbar, and Z+jets
 - Needs good reconstruction of the missing transverse momentum
 - Gets a bit more difficult at higher instantaneous luminosities

- pp → H +2jets → WW* +2jets → 2leptons+2neutrinos +2jets; VBF
 - Large irreducible backgrounds from ttbar
 - Needs good reconstruction of the missing transverse momentum and forward jets (almost indistinguishable jets from pileup)
 - Gets a more difficult at higher instantaneous luminosities
- pp \rightarrow H \rightarrow $\tau\tau$ (variety of decay modes)
 - Requires very good reconstruction of the missing transverse momentum
 - Large backgrounds
 - Higher pileup does not help
- pp → H +2jets → ττ +2jets; VBF
 - Same story.. A bit more difficult
- pp \rightarrow WH/ZH, H \rightarrow $\gamma\gamma$, Z \rightarrow $\ell\ell$, W \rightarrow $\ell\nu$
 - Low signal rate; expect ~100 events at HL-LHC
 - S/B ~10% for ZH and 2% for WH

- pp → ttbar H, H→γγ
 - S/B ~ 20%; expect ~100 events at HL-LHC
 - Precise measurement of the top-Yukawa coupling

- pp → H → μμ
 - S/B ~ 0.2%; very narrow peak
 - 6σ from 3000 fb⁻¹ from HL-LHC
 - Mostly independent of pileup

- pp \rightarrow ttbar H, H \rightarrow µµ
 - Expect \sim 30 events from 3 ab⁻¹, S/B > 1
- pp \rightarrow WH /ZH, H \rightarrow bbbar, W \rightarrow ℓ v, Z \rightarrow $\ell\ell$ /vv (Not included)
 - High backgrounds from V+jets and ttbar
 - The jet momentum resolution degrades with pileup
- pp \rightarrow WH, H \rightarrow WW (3-lepton FS)
 - Sensitive to the H—WW coupling from both initial and final states
- Also expect inclusion of additional initial and final states relevant to Higgs production (e.g. pp \rightarrow ZH, H \rightarrow ZZ) some time later (next year)
- $H \rightarrow Z\gamma$ is another interesting channel worth considering..

Expected measurement precision

 No theory assumption on the particle content in the Higgs loops or the total width. Dashed bars – theory uncertainties from scales and PDFs

Higgs self coupling

- λ_{HHH} can be measured via pp \rightarrow HH pair production
 - 34 fb
 - Interferes with regular gg→HH
- Investigated two channels:
- HH→bbbar γγ
 - 260 events in the 3 ab⁻¹ (before event selection)
 - S/B ~ 0.7 after event selection; 15 signal events
- HH→bbar WW
 - 25k expected events in the 3 ab⁻¹
 - almost identical to ttbar: $S/B \sim 10^{-5}$
- Can obtain first evidence of Higgs self coupling with HL-LHC
- More channels will be considered
- The quartic self coupling is not accessible at the LHC!

Weak boson scattering

- Higgs

 Expect unitarity of scattering amplitudes in longitudinal vector boson scattering
- ZZjj→4leptons +2 jets
 - Clean channel; small cross section
- WZ+2jets is also doable
 - Clean. Higher cross-sections
- WW+2jets

Weak boson scattering

- Higgs

 Expect unitarity of scattering amplitudes in longitudinal vector boson scattering
- ZZjj→4leptons +2 jets
 - Clean channel; small cross section
- WZ+2jets is also doable
 - Clean. Higher cross-sections
- WW+2jets
 - Doable in for same-sign W's
 - High backgrounds for oppositelycharged W's (the fig. is for 3 ab⁻¹) --->

Conclusions

- The m(H)=126 GeV allows access to a wide variety of decay modes
- HL-LHC offer an improvement of the couplings (and rare decay modes), needed for the self-coupling
- Combination with CMS will also improve precision of the measurements

